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Abstract

We prove some inequalities relating intrinsic and extrinsic curvature invariants for invariant submanifolds of Kaehlerian and
Sasakian space forms. When we restrict to invariant submanifolds of odd-dimensional unit spheres or invariant submanifolds of
complex Euclidean space, one of the inequalities gives a positive answer to a conjecture, proposed in [P.J. De Smet, F. Dillen,
L. Verstraelen, L. Vrancken, A pointwise inequality in submanifold theory, Arch. Math. (Brno) 35 (1999) 115–128].
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1. Preliminaries

Let Mn be a Riemannian manifold of dimension n with Levi-Civita connection ∇ and Riemann–Christoffel
curvature tensor R. If {e1, . . . , en} is an orthonormal basis for Tp M , then we define, following B.Y. Chen’s convention,
the scalar curvature of Mn at p by

τ =

n∑
i< j=1

〈R(ei , e j )e j , ei 〉 (1)

and the normalized scalar curvature of Mn at p by ρ =
2

n(n−1)
τ .

Now let M̃m be another Riemannian manifold of dimension m > n with Levi-Civita connection ∇̃ and
Riemann–Christoffel curvature tensor R̃ and let f : Mn

→ M̃m be an isometric immersion. Then we have the
formulas of Gauss and Weingarten, which state that for vector fields X and Y tangent to Mn and for a normal vector
field U it holds that

∇̃X Y = ∇X Y + h(X, Y ), (2)
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∇̃X U = −AU X + ∇
⊥

X U, (3)

where h is a symmetric (1, 2)-tensor field, taking values in the normal bundle, called the second fundamental form,
and AU is a symmetric (1, 1)-tensor field, called the shape operator associated with U . ∇

⊥ is a connection in the
normal bundle and we denote its curvature tensor by R⊥. The equations of Gauss and Ricci are then given by

〈R(X, Y )Z , T 〉 = 〈R̃(X, Y )Z , T 〉 + 〈h(X, T ), h(Y, Z)〉 − 〈h(X, Z), h(Y, T )〉, (4)

〈R⊥(X, Y )U, V 〉 = 〈R̃(X, Y )U, V 〉 + 〈[AU , AV ]X, Y 〉, (5)

for tangent vectors X , Y , Z and T and normal vectors U and V . We define the normal scalar curvature of Mn at p by

τ⊥
=

√√√√ n∑
i< j=1

m−n∑
α<β=1

〈R⊥(ei , e j )uα, uβ〉2 (6)

and the normalized normal scalar curvature of Mn at p by ρ⊥
=

2
n(n−1)

τ⊥, which corresponds to the definition

proposed in [5]. Here {e1, . . . , en} is as above and {u1, . . . , um−n} is an orthonormal basis for T ⊥
p M . Another extrinsic

curvature invariant that we will use is

‖h‖
2

=

n∑
i, j=1

‖h(ei , e j )‖
2

=

m−n∑
α=1

‖Auα‖
2. (7)

Denoting by H =
1
n

∑n
i=1 h(ei , ei ) the mean curvature vector of the submanifold at p, the following conjecture was

formulated in [5]:

Conjecture 1. Let f : Mn
→ M̃m(c) be an isometric immersion, where M̃m(c) is a real space form of constant

sectional curvature c. Then

ρ ≤ ‖H‖
2
− ρ⊥

+ c.

This is an extension of the well-known inequality (see for instance [3])

ρ ≤ ‖H‖
2
+ c. (8)

Let M̃2m(c) be a Kaehlerian space form of real dimension 2m (complex dimension m) of constant holomorphic
sectional curvature c. The curvature tensor R̃ of a Kaehlerian space form is given by

R̃(X, Y )Z =
c

4
(〈Y, Z〉X − 〈X, Z〉Y + 〈JY, Z〉J X − 〈J X, Z〉JY − 2〈J X, Y 〉J Z), (9)

where J denotes the complex structure of M̃2m(c). If this space is complete and simply connected, it is well known
that it is isometric to

• a complex projective space CPm(c), if c > 0;
• the complex Euclidean space Cm , if c = 0;
• a complex hyperbolic space CHm(c), if c < 0.

We say that a 2n-dimensional submanifold f : M2n
→ M̃2m(c) is invariant (also called complex or Kaehler) if

J (Tp M) ⊂ Tp M for every p ∈ M2n . For an invariant submanifold, one has

AJU X = −AU J X = J AU X. (10)

A Sasakian manifold can be seen as an odd-dimensional analogue of a Kaehlerian manifold. We call an odd-
dimensional Riemannian manifold, with Levi-Civita connection ∇, Sasakian if it carries a unit vector field ξ , a one-
form η and a (1,1)-tensor field φ such that for all tangent vectors X and Y

φ2(X) = −X + η(X)ξ ; η(X) = 〈X, ξ〉; 〈φX, φY 〉 = 〈X, Y 〉 − η(X)η(Y ); (11)

(∇Xφ)Y = 〈X, Y 〉ξ − η(Y )X. (12)
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If only the equations (11) are satisfied, the manifold is said to carry an almost contact metric structure. Using these
equations one easily proves

η(ξ) = 1; φ(ξ) = 0; η ◦ φ = 0. (13)

A Sasakian space form M̃2m+1(c) of constant φ-holomorphic sectional curvature c is a Riemannian manifold with
Sasakian structure (ξ, η, φ), such that all 2-planes spanned by a basis of the form {X, φX} have the same sectional
curvature. The curvature tensor R̃ of these spaces takes the form

R̃(X, Y )Z =
c + 3

4
(〈Y, Z〉X − 〈X, Z〉Y )

+
c − 1

4
(η(X)η(Z)Y − η(Y )η(Z)X + 〈X, Z〉η(Y )ξ − 〈Y, Z〉η(X)ξ

+ 〈φY, Z〉φX − 〈φX, Z〉φY + 2〈X, φY 〉φZ). (14)

If a Sasakian space form M̃2m+1(c) is complete and simply connected, it is isometric to one of the following spaces:

• a D-homothetic transformation of S2m+1(1), if c > −3 (which coincides with S2m+1(1) for c = 1);
• the real number space with standard Sasakian structure R2m+1(−3), if c = −3;
• a line bundle over a complex hyperbolic space (R, CHm), if c < −3.

Now let f : M2n+1
→ M̃2m+1(c) be an isometric immersion of a Riemannian manifold into a Sasakian space form.

By analogy with the Kaehlerian case, we say that the submanifold is invariant if φTp M ⊂ Tp M for every p ∈ M2n+1.
In that case, ξ is tangent to M . For invariant submanifolds, one has

AφU X = −AU φX = φ AU X; AU ξ = 0. (15)

We call a Sasakian manifold M̃2m+1 regular if every orbit of ξ is a closed set. In this case the set of all these orbits

forms a differentiable manifold and we can construct a Riemannian submersion π : M̃2m+1
→ M̃ = M̃2m+1/ξ .

Locally the fibration π always exists. The base space carries the structure of a Kaehlerian manifold of real dimension

2m: if we denote, for a vector field X on M̃
2m

, by X∗ its horizontal lift, i.e. the unique vector field on M̃2m+1

orthogonal to the fibres of π and such that π∗|p(X∗
|p) = X |π(p) for all p ∈ M̃2m+1, then the complex structure of

M̃
2m

is given by (J X)∗ = φX∗. Moreover, if M̃2m+1 is a Sasakian space form of constant φ-holomorphic sectional
curvature c, then the base space is a Kaehlerian space form of constant holomorphic sectional curvature c + 3. From
now on, we assume we are in this case. If M2n+1 is an invariant submanifold of M̃2m+1(c), then one can prove that

the image M
2n

of M2n+1 under π is an invariant submanifold of M̃
2m

(c + 3). So we have the following commutative
diagram:

M2n+1, ∇
f

−−−−−→
A ,h, ∇⊥

M̃2m+1(c), ∇̃

π |M

y yπ

M
2n

, ∇
f

−−−−−→

A, h, ∇
⊥

M̃
2m

(c + 3), ∇̃.

For X, Y tangent to M
2n

and U normal to M
2n

, we have

(∇X Y )∗ = ∇X∗Y ∗
− 〈φX∗, Y ∗

〉ξ (16)

(h(X, Y ))∗ = h(X∗, Y ∗) (17)

(AU X)∗ = AU∗ X∗ (18)

(∇
⊥

X U )∗ = ∇
⊥

X∗U∗. (19)

For a rigorous treatment of this theory, see [12,2].
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2. Invariant submanifolds of Kaehler manifolds

In this section, we consider invariant submanifolds of Kaehlerian space forms. We use the same notation as above.
Note that we can choose an orthonormal tangent frame of the form {e1, . . . , en, en+1 = Je1, . . . , e2n = Jen} and an
orthonormal normal frame of the form {u1, . . . , um−n, um−n+1 = Ju1, . . . , u2(m−n) = Jum−n}. The following lemma
was proved in [8]:

Lemma 1. Let M2n be an invariant submanifold of a Kaehlerian space form M̃2m(c) of constant holomorphic
sectional curvature c. Then

1
n
‖h‖

4
≤

2(m−n)∑
α,β=1

‖[Auα , Auβ ]‖
2

≤ ‖h‖
4.

Studying the proof, one sees that equality holds in the second inequality if and only if the complex rank of
A =

∑2(m−n)
α=1 A2

uα
is at most 1 and that equality holds in the first inequality if and only if M2n is Einstein, i.e.

the Ricci curvature tensor S(X, Y ) =
∑2n

i=1〈R(X, ei )ei , Y 〉 is a scalar multiple of the metric at every point. In the
case that M2n is a complex Einstein hypersurface, we have, see for instance [10], that either M2n is totally geodesic
or that c > 0 and the Ricci curvature tensor satisfies

S(X, Y ) =
n

2
c〈X, Y 〉. (20)

We now prove the following:

Theorem 1. Let M2n be an invariant submanifold of a Kaehlerian space form M̃2m(c) of constant holomorphic
sectional curvature c. Then

(i) 4n(τ⊥)2
≥ (n(n + 2)c − 2τ)2

+ c2n2(m − n − 1),

(ii) 4(τ⊥)2
≤

(
(n2

+ n + 1)c − 2τ
)2

+ c2(mn − n2
− 1),

with equality in (i) if and only if M2n is Einstein and equality in (ii) if and only if the complex rank of A =∑2(m−n)
α=1 A2

uα
is at most 1.

Proof. Using Gauss’s equation (4), the expression for R̃ (9) and the definition of the scalar curvature (1) one can
compute

τ =

2n∑
i< j=1

〈R(ei , e j )e j , ei 〉 =
1
2

n(n + 1)c −
1
2
‖h‖

2. (21)

The normal scalar curvature of M2n is given by

(τ⊥)2
=

2(m−n)∑
α<β=1

2n∑
i< j=1

〈R⊥(ei , e j )uα, uβ〉
2

and thus, using Ricci’s equation,

(τ⊥)2
=

2(m−n)∑
α<β=1

2n∑
i< j=1

(
〈[Auα , Auβ ]ei , e j 〉 +

c

2
〈ei , Je j 〉〈Juα, uβ〉

)2

=

2(m−n)∑
α<β=1

2n∑
i< j=1

〈[Auα , Auβ ]ei , e j 〉
2
+

c2

4

2(m−n)∑
α<β=1

2n∑
i< j=1

〈ei , Je j 〉
2
〈Juα, uβ〉

2

+ c
2(m−n)∑
α<β=1

2n∑
i< j=1

〈ei , Je j 〉〈Juα, uβ〉〈[Auα , Auβ ]ei , e j 〉
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=
1
4

2(m−n)∑
α,β=1

2n∑
i, j=1

〈[Auα , Auβ ]ei , e j 〉
2
+

c2

4
n(m − n) − c

m−n∑
α=1

n∑
i=1

〈[Auα , AJuα ]ei , Jei 〉

=
1
4

2(m−n)∑
α,β=1

‖[Auα , Auβ ]‖
2
+

c2

4
n(m − n) + 2c

m−n∑
α=1

n∑
i=1

‖Auα ei‖
2

=
1
4

2(m−n)∑
α,β=1

‖[Auα , Auβ ]‖
2
+

c2

4
n(m − n) +

c

2
‖h‖

2.

Now using the first inequality in Lemma 1, we obtain

(τ⊥)2
≥

1
4n

‖h‖
4
+

c

2
‖h‖

2
+

c2

4
n(m − n)

=
1

4n
(‖h‖

2
+ nc)2

+
c2

4
n(m − n − 1)

=
1

4n
(n(n + 2)c − 2τ)2

+
c2

4
n(m − n − 1),

with equality holding if and only if M2n is Einstein. This proves (i). On the other hand, using the second inequality in
Lemma 1 yields

(τ⊥)2
≤

1
4
‖h‖

4
+

c

2
‖h‖

2
+

c2

4
n(m − n)

=
1
4
(‖h‖

2
+ c)2

+
c2

4
(mn − n2

− 1)

=
1
4
((n2

+ n + 1)c − 2τ)2
+

c2

4
(mn − n2

− 1),

with equality if and only if the complex rank of A, defined above, is less than or equal to 1. This finishes the proof.
�

We can give some more details on the submanifolds realizing the equality in (ii). First, notice that after a suitable
choice of a normal basis, the shape operators are of the form

Au1 =



λ 0
0 0 0

. . .

−λ 0
0 0 0

. . .


and AJu1 =



λ 0
0 0 0

. . .

λ 0
0 0 0

. . .


,

with λ = ‖h(e1, e1)‖, and all others are 0. If we suppose the submanifolds to be complete, then we have the following
[1]: if c = 0, M2n is totally geodesic, or a complex curve or a complex cylinder in the sense of Abe. If c > 0, M2n is
totally geodesic or a complex curve. As far as we know there is no such result known in the complex hyperbolic case.

We can now prove a special case of Conjecture 1:

Corollary 1. For an invariant submanifold M2n of Cm ∼= E2m , we have

ρ ≤ −ρ⊥.

Proof. Taking c = 0 in the second inequality of Theorem 1, we get τ⊥
≤ |τ |, or, on multiplying by 2

2n(2n−1)
,

ρ⊥
≤ |ρ|. Because an invariant submanifold is automatically minimal, (8) implies that ρ ≤ 0, and hence we obtain

the result. �
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The following result was proven in a different way in [4].

Corollary 2. If an invariant submanifold M2n of a Kaehlerian space form M̃2m(c) is normally flat, then c = 0 and
M2n is totally geodesic.

Proof. Taking τ⊥
= 0 in the first inequality in Theorem 1 yields that we must have equality, and hence M2n is

Einstein and we are in one of the following cases:

• c = τ = 0, and thus ‖h‖
2

= 0;
• m = n + 1 and τ = n(n + 2)c, and thus ‖h‖

2
= −nc.

Because all invariant Einstein submanifolds of CHm are totally geodesic (see [11]), we find that the second case
cannot occur, except when c = 0 and then it coincides with the first case. �

3. Invariant submanifolds of Sasakian manifolds

In this section we will consider invariant submanifolds of Sasakian space forms, using the Riemannian
submersion π , introduced in Section 1. We use the same notation here. Let {e1, . . . , en, en+1 = Je1, . . . , e2n =

Jen} be an orthonormal frame on M
2n

; then {e∗

1, . . . , e∗

2n, ξ} is an orthonormal frame on M2n+1. Similarly, if

{u1, . . . , um−n, um−n+1 = Ju1, . . . , u2(m−n) = Jum−n} is an orthonormal frame normal to M
2n

in M
2m

(c + 3),
then {u∗

1, . . . , u∗

2(m−n)} is an orthonormal frame normal to M2n+1 in M̃2m+1(c). The following lemma was proved
in [9].

Lemma 2. Let M2n+1 be an invariant submanifold of a Sasakian space form M̃2m+1(c) of constant φ-holomorphic
sectional curvature c. Then

1
n
‖h‖

4
≤

2(m−n)∑
α,β=1

‖[Au∗
α
, Au∗

β
]‖

2
≤ ‖h‖

4.

From the proof, it follows that equality holds in the second inequality if and only if the rank of A =
∑2(m−n)

α=1 A2
u∗

α

is less than or equal to 2 and that equality holds in the first inequality if and only if M2n+1 is η-Einstein, meaning that
the Ricci curvature tensor is of the form S(X, Y ) = a〈X, Y 〉 + bη(X)η(Y ) for some functions a and b. Remark that

M2n+1 is η-Einstein if and only if M
2n

is Einstein.

Lemma 3. Denote by τ⊥ the normal scalar curvature of M2n+1 in M̃2m+1(c) and by τ⊥ the normal scalar curvature

of M
2n

in M̃
2m

(c + 3). Then

(τ⊥)2
= (τ⊥)2

+ 2‖h‖
2
+ 2(c + 1)n(m − n).

Proof. For X, Y tangent to M
2n

and U, V normal to M
2n

, one can verify straightforwardly, using (16), (19) and the
equalities [ξ, U∗

] = 0 and ∇̃Xξ = −φX (the last one following from (12)), that

〈R⊥(X∗, Y ∗)U∗, V ∗
〉 = 〈R

⊥
(X, Y )U, V 〉 + 2〈J X, Y 〉〈JU, V 〉.

This implies

(τ⊥)2
=

2(m−n)∑
α<β=1

2n∑
i< j=1

〈R
⊥
(ei , e j )uα, uβ〉

2

=

2(m−n)∑
α<β=1

2n∑
i< j=1

(〈R⊥(e∗

i , e∗

j )u
∗
α, u∗

β〉 − 2〈Jei , e j 〉〈Juα, uβ〉)2

= (τ⊥)2
−

2(m−n)∑
α<β=1

2n∑
i=1

〈R⊥(e∗

i , ξ)u∗
α, u∗

β〉
2
− 4

m−n∑
α=1

n∑
i=1

〈R⊥(e∗

i , (Jei )
∗)u∗

α, (Juβ)∗〉 + 4n(m − n)
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= (τ⊥)2
− 4

m−n∑
α=1

n∑
i=1

(
〈[Au∗

α
, Aφu∗

α
]e∗

i , φe∗

i 〉 −
c − 1

2

)
+ 4n(m − n)

= (τ⊥)2
+ 8

m−n∑
α=1

n∑
i=1

‖Au∗
α
e∗

i ‖
2
+ 4

c − 1
2

n(m − n) + 4n(m − n)

= (τ⊥)2
+ 2‖h‖

2
+ 2(c + 1)n(m − n). �

Theorem 2. Let M2n+1 be an invariant submanifold of a Sasakian space form M̃2m+1(c) of constant φ-holomorphic
sectional curvature c. Then

(i) 4n(τ⊥)2
≥ (n(n + 2)c + 3n2

− 2τ)2
+ (c − 1)2n2(m − n − 1);

(ii) 4(τ⊥)2
≤ ((n2

+ n + 1)c + (3n2
+ n − 1) − 2τ)2

+ (c − 1)2(mn − n2
− 1);

with equality in (i) if and only if M2n+1 is η-Einstein and equality in (ii) if and only if the rank of A =
∑2(m−n)

α=1 A2
u∗

α

is at most 2.

Proof. Using Gauss’s equation (4), the expression for R̃ (14) and the definition of scalar curvature (1), we obtain

τ =
1
2

n(n + 1)c +
1
2

n(3n + 1) −
1
2
‖h‖

2. (22)

Remark that |h| = |h|, due to (17). From Theorem 1 we then have

(τ⊥)2
≥

1
4n

‖h‖
4
+

c + 3
2

‖h‖
2
+

(c + 3)2

4
n(m − n)

and hence by the previous lemma

(τ⊥)2
≥

1
4n

‖h‖
4
+

c − 1
2

‖h‖
2
+

(c − 1)2

4
n(m − n).

The inequality (i) now follows from (22). In an analogous way one can prove (ii). The remaining statements follow

from the observations that M2n+1 is η-Einstein if and only if M
2n

is Einstein and that the rank of A equals the real
rank of A =

∑m−n
α=1 Auα . �

Again, we can prove a special case of Conjecture 1:

Corollary 3. Let M2n+1 be a submanifold of S2m+1(1) which is invariant with respect to the standard Sasakian
structure on the unit sphere. Then

ρ ≤ 1 − ρ⊥.

Proof. Taking c = 1 in the second inequality of Theorem 2 yields

(τ⊥)2
≤ (n(2n + 1) − τ)2.

Multiplying by
(

2
(2n+1)2n

)2
gives (ρ⊥)2

≤ (1 − ρ)2 and because 1 − ρ ≥ 0, due to (8), we get the result. �

The following corollary was proven in a different way in [6].

Corollary 4. If an invariant submanifold M2n+1 of a Sasakian space form M̃2m+1(c) is normally flat, then there are
two possibilities:

• c = 1 and M2n+1 is totally geodesic;
• c = −1, m = n + 1, τ = n(n − 1) and M2m−1 is η-Einstein.

Proof. If τ⊥
= 0, we must have equality in the first inequality of Theorem 2. Hence M2n+1 is η-Einstein and we have

the following possibilities:
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• c = 1 and τ =
1
2 n(n + 2)c +

3
2 n2, and thus h = 0;

• m = n + 1 and τ =
1
2 n(n + 2)c +

3
2 n2, and thus ‖h‖

2
= −(c − 1)n.

But since M2n+1 is η-Einstein in M̃2m+1(c), M
2n

is Einstein in M̃
2m

(c+3) and according to (20) this implies in the

second case that either M
2(m−1)

is totally geodesic, and then we are in the first case, or that c > 0 and τ =
1
2 n2(c+3),

and thus ‖h‖
2

= n(c + 3). So we find that in the second case c = −1, τ = n(n − 1) and ‖h‖
2

= 2n. �

To show that the second case in the previous corollary actually occurs, we give the following example. Consider the
complex quadric in CPm(2) with equation z2

0 + z2
1 + · · · + z2

m = 0. It is well known that Qm−1 is Einstein and hence
its lift is an η-Einstein submanifold of M̃2m+1(−1). Moreover ‖h‖

2
= ‖h‖

2
= 2n from (21) and (20). Moreover we

see from [7] that every submanifold from the second case is locally isometric to this example.
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